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Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are employed as an ultraviolet filter in sunscreen products because of their high
ultraviolet absorptivity. However, sunscreen sprays may pose health risks due to the toxicity of inhaled TiO2 NPs. Therefore, we
estimated the potential human health risk posed by inhaled TiO2 NPs emitted from sunscreen sprays. The physiology-based lung
model was employed to predict the lung TiO2 NPs burden caused by long-term exposure. A Hill-based dose–response model
described the relationship between lung inflammation and TiO2 NP accumulation. The Weibull threshold model was used to
estimate the threshold amount of accumulation inducing 0.5% of the maximum increase in neutrophils. The potential health risk
was assessed using a hazard quotient–based probabilistic risk model. All data obtained to date indicate that application of
sunscreen sprays poses no significant health risk. However, using data simulations based on the threshold criterion, we discov-
ered that in terms of practical strategies for preventing the risks posed by inhaled TiO2 NPs emitted from spray products, the
suggested daily use amount and pressing number are 40 g (95% confidence interval: 11–146 g) and 66 (18–245), respectively. In
this study, we successfully translated the potential health risk of long-term exposure to NP-containing sunscreen sprays and
recommendations for daily application into mechanistic insights.
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Introduction

Titanium dioxide (TiO2) nanoparticles (NPs) are applicable in
various fields, including the pharmaceutical (medical) and food
industries, agriculture, and environmental protection. Of all types
of NPs, TiO2 NPs are the most widely used and account for 70%
of the total volume of all pigments produced worldwide because
of their high refractive index, brightness, and strong ultraviolet
(UV) absorption (Baan et al. 2006; Rossi et al. 2010a). TiO2 NPs
mostly occur in rutile, anatase, and brookite forms, amongwhich
the anatase form has the most industrial applications because of
its relatively high photocatalytic activity (Baranowska-Wójcik
et al. 2020; Bourikas et al. 2014).

Although application to skin through sunscreen is the route
through which TiO2 NPs most commonly come into contact
with humans, most studies performed on humans or animals
have demonstrated that TiO2 NPs do not penetrate the outer
layers of the stratum corneum to reach viable cells or reach the
circulatory system (Dréno et al. 2019; Escobar-Chavez et al.
2008; Filipe et al. 2009; Furukawa et al. 2011; Monteiro-
Riviere et al. 2011; Sadrieh et al. 2010; Sagawa et al. 2012;
Wu et al. 2009; Xu et al. 2011). Ingestion of TiO2 NPs most
often occurs through food products, water, liquid beverages,
and drug carriers (Hagens et al. 2007; Lomer et al. 2002).
Thus, the potential risks associated with the dermal and oral
routes are less considered than that associated with inhalation.
The toxicities of NPs that are inhaled are more likely to be a
cause of concern than the toxicities of NPs entering the body
through other routes because NPs have sizes comparable to
those of viruses and biological molecules (e.g., proteins),
which can enable them to easily penetrate into the pulmonary
epithelium and subsequently reach other organs (Lynch and
Dawson 2008; Miller et al. 2017; Oberdörster et al. 2002;
Wiemann et al. 2017). A growing body of evidence indicates
that inhalation of TiO2 NPs induces airway inflammation,
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increasing the risks of pulmonary diseases, especially in indi-
viduals susceptible to immune-mediated airway diseases
(Gustafsson et al. 2011; Jonasson et al. 2013). Furthermore,
Medina-Reyes et al. (2019) suggested that TiO2 nanofibers
enhance the aggressive tumor phenotype in lung epithelial
cells; accordingly, assessing the inhalation risks to human
lungs posed by acute or chronic exposure to TiO2 NPs from
all sources is imperative. The probability of TiO2 NP ingestion
during the application of a spray product should be low.

Apart from occupational exposure, spray products consti-
tute the primary means of exposure to TiO2 NPs through the
airborne route in consumers. In bulk form, TiO2 is usually
used as a white pigment, but the nanoform is primarily applied
in sunscreens and leave-on products purported to provide UV
protection (SCCS 2018). The SCCS (2018) suggested that
TiO2 NPs pose no risks to the human body when applied to
healthy, intact, or sunburnt skin. However, they cannot be
considered safe when used in spray products.

Information regarding the use of a comprehensive risk as-
sessment framework for determining the potential risks of
TiO2 NP inhalation from spray products is lacking.
Accordingly, the aim of this study was to characterize the
long-term risks of TiO2 NPs in pulmonary systems of the
human body by employing a mechanistic approach linked
with a human health risk assessment framework.

The objectives of this study were fivefold: (i) to collect
information regarding the exposure concentration of TiO2

NPs resulting from sunscreen sprays, (ii) to develop a mech-
anistic tool for predicting the long-term accumulation of TiO2

NPs in the lungs, (iii) to construct a dose–response relation-
ship describing the pulmonary effects of various TiO2 NP
doses, (iv) to obtain suitable threshold values of daily use
amount and number of presses for each spray product, and
(v) to assess the long-term risks of TiO2 NPs to obtain impli-
cations for the safety considerations of using NPs in pharma-
ceuticals and personal care products.

Materials and methods

Quantitative data analysis

Empirical data on exposure concentrations and measurements
of TiO2 NPs in human lungs are limited. The SCCS has pro-
vided valuable data on the daily inhaled doses of airborne
TiO2 NPs contained in eight commercial sunscreen spray
products (SCCS 2018). Briefly, eight TiO2 NP–containing
spray products, named P1−P8, with the same nozzle type
(pump) were covered, and these spray products had four sun-
screen formulations (recipe 22, recipe 35, E42026503-00, and
E47028018-00-4; Supplementary Table S1). The emitted vol-
ume of each product ranged from 0.19 to 0.90 mL per action,
and the viscosity and water content ranged from 1080 to 5000

mPa·s and 25−75% (oil-in-water emulsion), respectively
(Supplementary Table S2).

The mass released from a spray dispenser, ranging from
4.36 to 4.84 g per gram of spray formulation was measured
by spraying each product (~9 g) into a chamber with a defined
control volume of 75 L, and time-resolved measurements of
aerosol concentration (remaining nonvolatile part) were made
(SCCS 2018). Particle measurements were implemented
using two parallel RESPICONs, which are commercial instru-
ments used to monitor inhalable, thoracic, and respirable frac-
tions of aerosols during occupational inhalation (SCCS 2018).
Continuous photometric and gravimetric measurements were
performed on the filter stages of three fractions in the
RESPICONs, with masses of Ti on filters analyzed using in-
ductively coupled plasma mass spectrometry (ICP-MS; SCCS
2018).

Physicochemical characterization of TiO2 NPs

The TiO2 NP content of the spray products ranged from 2.54
to 5.5% (PARSOL® TXr, Supplementary Table S2). The
crystalline structure of TiO2 NPs was mainly the rutile form,
as determined using X-ray diffraction (Albers et al. 2015;
SCCS 2018). In terms of physical appearance, the TiO2 NPs
were spherical clusters and coated with amorphous silica (0.1–
1%) and dimethicone ((C2H6OSi)xC4H12Si; 0−0.1%) as the
second and first layers, respectively (Albers et al. 2015). The
median particle size of the TiO2 NPs was approximately
102 nm in P1−P6 and ≥30 nm in P7 and P8, in compliance
with the Draft Commission Regulation (EU) amendment
Annex VI to Regulation (EC) No. 1223/2009 of the
European Parliament and SCCS (2018). Each spray product
also complied with the regulation requiring a volume-specific
surface area of ≤460 m2 cm−3 (SCCS 2018).

Physiology-based lung model

A compartmentalized physiologically based (PB) lung model
was developed on the basis of previous studies to mechanis-
tically estimate the burden of TiO2 NPs in human lung tissue
(Stöber et al. 1990; Tran et al. 1999, 2000, 2003). The PB lung
model can predict long-term TiO2 NP lung burden and de-
scribe clearance processes mediated by alveolar macrophages
(AMs) in pulmonary regions. In the PB model, three
regions—the alveolar surface, interstitium, and lymph
nodes—were defined to describe the distribution of TiO2

NPs in the human lungs (Fig. 1). The alveolar surface region
had four compartments describing the distributions of incom-
ing TiO2 NPs (X1), mobile AMs (X2), decayed and inactive
AMs (X3), and alveolar sequestration (X4; Fig. 1a, b). The
interstitium region also had four compartments describing
the distributions of (i) free TiO2 NPs (X5), (ii) mobile intersti-
tial macrophages (IMs) (X6), (iii) decayed and inactive IMs
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(X7), and (iv) interstitial granuloma (X8; Fig. 1a, c). Some free
TiO2 NPs or those from mobile IMs can be removed to the
lymph node region (X9; Fig. 1a, d).

The PB lung model framework and model parameters were
fully constructed and estimated by Tran et al. (2003). A set of
first-order ordinary differential equations with re-estimated
parameters were used to simulate the dynamic distribution of
TiO2 NPs in different regions of the human lungs, enabling
mechanistic description of the biodynamic interactions of
TiO2 NPs among compartments (Table 1).

When TiO2 NP–containing aerosols are inhaled (i.e.,
respiratory fraction in the RESPICONS; Figs. S1 and S2),
the TiO2 NPs are deposited on the alveolar surface, which
has four designated compartments (X1(t)–X4(t); Eqs. (1)–(4);
Table 1). De represents the rate of TiO2 NP deposition (mg·

day−1), which is based on datasets from SCCS (2018); t is the
duration of exposure (days); rA is the phagocytosis rate by
AM (day−1), inormal is the normal interstitialization rate of
TiO2 NPs (day

−1); θ(Malv) is the function of the alveolar sur-
face burden that describes the retardation of the clearance of
insoluble dust; δA is the rate of particles back to alveolar sur-
face for rephagocytosis (day−1); ρA is the transfer rate of par-
ticles from active to inactive AMs (day−1); cl is the AM-
mediated clearance of particles (day−1); and ϕ is the alveolar
sequestration (day−1). The transfer of TiO2 NPs from the al-
veolar surface to the interstitium region, which has the four
compartments X5(t)–X8(t), can be expressed by Eqs. (5)–(8)
(Table 1), where e refers to the removal rate of particles to
lymph nodes, θ(Minst) is the function of the interstitium burden
that describes the retardation of the clearance of insoluble
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dust, rI is the phagocytosis rate by IMs (day−1), δI is the rate of
particles back to interstitium for re-phagocytosis (day-1), ρI is
the transfer rate of particles from active to inactive IMs
(day−1), and ν is the rate of formation of interstitial granuloma
(day−1). Movement of TiO2 NPs from mobile IMs in the in-
terstitium region to lymph nodes can be expressed by Eq. (9),
where X9(t) is the time-dependent dose of TiO2 NPs in the
lymph node region (mg; Table 1).

Animal-based dose–response model

We designed the dose–response profiles of TiO2 NPs and ad-
verse effects in a murine model by adopting experimental con-
ditions aligned with the physiochemical characteristics of TiO2

NPs. The TiO2 NPs were in rutile form and coated with amor-
phous silica; they had a particle size and specific surface area of
10 × 40 nm2 and 132m2 g−1, respectively (Rossi et al. 2010a). A

three-parameter Hill model was used to fit the dataset describing
neutrophil infiltration to bronchoalveolar lavage (BAL) (%)
posed by TiO2 NPs lung burdens in 7-week-old female
BALB/c/Sca mice (Scanbur AB, Sollentuna, Sweden) (Rossi
et al. 2010a). Briefly, the mice were exposed to 10 mg m−3

airborne TiO2 NPs for either 2 h, 2 h a day on 4 consecutive
days, or 2 h a day on 4 consecutive days for 4 weeks.

Before modeling the dose–response relationship, we must
transform the dose data derived from the exposure test to
ensure that they corresponded to the human lung TiO2 NP
burden dose (total mass of TiO2 NPs in the human lungs) that
was forecast using the PB lung model. Accordingly, the data
on the TiO2 NP burden in the mouse lungs were multiplied by
the ratio of human and mice lung weight to obtain the equiv-
alent burden in the human lungs.

The dose–response model describing the relationships be-
tween TiO2 NPs lung burden and neutrophils in BAL cells

Table 1 Equations and input parameters used in the present PB lung modela

PB lung model

Alveolar surface
dX 1
dt ¼ De−rA X 1− inormalθ M alvð Þ þ 1−θ M alvð Þð Þimax½ �X 1 þ θ M alvð ÞδA X 3, (1)
dX 2
dt ¼ rA X 1−θ M alvð ÞclX 2−ρA X 2, (2)
dX 3
dt ¼ ρA X 2−θ M alvð ÞδA X 3− 1−θ M alvð Þð Þ φX 3, (3)
dX 4
dt ¼ 1−θ M alvð Þð Þ φX 3, (4)

Interstitium
dX 5
dt ¼ inormalθ M alvð Þ þ 1−θ M alvð Þð Þimax½ �X 1−θ M instð ÞeX 5−rI X 5 þ θ M instð ÞδI X 7, (5)
dX 6
dt ¼ rI X 5−ρI X 6−θ M instð ÞeX 6, (6)
dX 7
dt ¼ ρI X 6−θ M instð ÞδI X 7− 1−θ M instð Þð Þ νX 7, (7)
dX 8
dt ¼ 1−θ M instð Þð Þ νX 7, (8)

Lymph node
dX 9
dt ¼ θ M instð Þe X 5 þ X 6ð Þ, (9)

Parameter values

rA (day−1) = 0.966 (0.690 – 3.450)b,c

inormal (day
−1) = 0.007d

imax (day
−1) = 0.435d

δA (day−1) = 0.140d

ρA (day−1) = 0.036 (0.029 – 0.200)b,c

cl (day−1) = 0.004 (0.002 – 0.007)c,d

ϕ (day−1) = 0.140d

θ(Malv) (─) = 0 – 1

rI (day
−1) = 0.966 (0.6900 – 3.4502)b,c

δI (day
−1) = 0.140d

ρI (day
−1) = 0.036 (0.0286 – 0.2000)b,c

ν (day−1) = 0.140d

θ(Minst) (─) = 0 – 1

e (day−1) = 0.024 (0.001 –0.319)c,d

a See text for meanings of abbreviations and parameter symbols
b Adopted from Stöber et al. (1990)
c (Min–Max)
dAdopted from Tran et al. (2003)
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(%) is expressed as Eq. (10) (Table 2), whereD is the TiO2 NP
lung burden (mg); Emax is the maximum response of neutro-
phils increment in BAL cells (%); EC50 is the TiO2 NP lung
burden corresponding to an effect equal to 50% of Emax (mg);
and n is the fitted Hill coefficient, for which n = 1 would
represent a linear response (Michaelis–Menten mode) and n
> 1 would imply that the biomarker was ultrasensitive to TiO2

NP toxicity. EC0.5, corresponding to 0.5% of Emax, was
employed to explore the toxic effects of TiO2 NPs in different
extents of sensitivity. One reason for employing this more
conservative criterion was that direct application of sunscreen
to the body leads to a higher probability of exposure to TiO2

NPs, especially near the nose and mouth. Another reason was
that considering the intrapopulation variation in sensitivity to
toxicants, the use of the EC0.5 criterion could ensure the pro-
tection of the potentially sensitive population.

Predictive risk threshold

To prevent human lung from toxicities of TiO2 NP–containing
aerosols, the thresholds of TiO2 NP lung burdens were esti-
mated using a three-parameter Weibull threshold model to
achieve the best fit for the 2.5th, 5th, 50th, 95th, and 97.5th
percentiles of the EC0.5 cumulative distribution function
(CDF). The CDF was probabilistically estimated from the
Hill-based dose–response model expressed in Eq. (10) on
the basis of the experimental datasets (Rossi et al. 2010a).

The Weibull threshold model can be described by Eq. (11)
(Table 2), where F(D) represents the EC0.5 CDF data corre-
sponding to a specific TiO2 NP lung burden in the human
body, α is the scale parameter influencing the distribution of
F(D) as a change in the abscissa scale, β is the shape param-
eter representing the slope of the line in the CDF data, and γ is
the fitted threshold dose of TiO2 NPs (mg). The threshold
value estimated based on EC0.5 CDF is denoted as γ0.5.

Probabilistic risk model

To meet the objective of protecting the human lungs from the
potential toxicities of and pulmonary diseases caused by

airborne TiO2 NPs from spray products, γ0.5 was selected as
a conservative criterion. A probabilistic risk assessment
(PRA) model integrated with the PB lung model was devel-
oped to characterize neutrophils in BAL cells (%) following
exposure to TiO2 NP–containing aerosols.

The PRA model was implemented on the basis of the the-
ory of Bayesian inference, which holds that the cumulative
risk of neutrophil increments in BAL cells under a given
TiO2 NP lung burden (R(E)) (i.e., posterior probability) is
the product of a prior probability P(D) and a conditional prob-
ability function P(E|D), which can be expressed as Eqs. (12)
and (13) (Table 2). To characterize the cumulative risk posed
by TiO2 NPs, the exceedance risk (ER) could be derived with
the exceedance profiles as 1 − R(E).

The potential risks of TiO2 NP lung burdens could also be
evaluated with the criterion of the threshold TiO2 NP dose by
using the hazard quotient (HQ) model, expressed in Eq. (14)
(Table 2), where D and γ0.5 were probabilistically estimated.
Specifically,HQ > 1would indicate that the TiO2NP–induced
lung burden poses a risk to human health based on increments
of neutrophils in BAL cells, whereas HQ < 1 would indicate
that the TiO2 NP–induced lung burden poses no risk to human
health.

Uncertainty and data analysis

The PB lung model was implemented using Berkeley
Madonna 8.0.1 (developed by Robert Macey and George
Oster at the University of California, Berkeley).
Mathematical models were fit using TableCurve 2D
(Version 5.01, AISN Software, Mapleton, OR, USA).
Uncertainty analyses of the parameters in the PB lung model
were implemented through 10,000 Monte Carlo (MC) simu-
lations to obtain 2.5th and 97.5th percentiles as 95% confi-
dence intervals (CIs) by using the Crystal Ball software (ver-
sion 2000.2, Decisioneering, Denver, CO, USA). Sensitivity
analyses were performed for each parameter in the PB lung
model to determine the most influential parameter on TiO2

NPs lung burdens in the human system. The overall study
framework is displayed in Supplementary Fig. S3.

Results

Lung deposition analysis

The simulated total TiO2 NP lung burden ranged from 0.06 to
0.21 mg (Fig. 2a). Specifically, inhalable TiO2 NPs contribut-
ed 80% to the total lung burden, with 79% on the alveolar
surface and approximately 1% in the interstitium; 20% of
the TiO2 NPs were eliminated from the lungs in lymph nodes
(Fig. 2b). Furthermore, in the alveolar surface region, the mo-
bile AM compartments had the highest distribution of TiO2

Table 2 Equations used in the overall probabilistic risk assessment
modela

Animal-based dose–response model

E Dð Þ ¼ Emax

1þ EC50
Dð Þn, (10)

Weibull threshold model

F Dð Þ ¼ 1−exp − D−γ
α

� �βh i
; D > γ > 0; α > 0; β > 0, (11)

Probabilistic risk assessment model

R(E)=P(D)×P(E|D), (12)

P EjDð Þ ¼ Φ Emax

1þ EC50
Dð Þn

� �
, (13)

Hazard quotient model

HQ ¼ D
γ0:5

, (14)

a See text for meanings of abbreviations and parameter symbols
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NPs (62%), followed by the decayed and inactive AM com-
partments and free particles (35% and 3%, respectively; Fig.
2c). Because the total TiO2 NP lung burden caused by expo-
sure to each product was saturated after 4 years of exposure,
the 4th year within the exposure duration was employed as the
time point at which to characterize the risk (Fig. 2a).

Sprays P7 and P8 were discovered to have the highest TiO2

NP concentrations (4.3% and 5.5%, respectively;
Supplementary Table S2). However, the exposure assessment
results demonstrated that the estimated total TiO2 NP lung
burdens posed by P7 and P8 were lower than those posed by
P5 and P6 (2.54% TiO2 NP concentration; Fig. 2;
Supplementary Table S2). This may have been because of
the smaller emitted volumes (0.19 ml per action) of P7 and
P8. Compared with P1–P3 and P4–P6 (recipes 22 and 35,

respectively), P7 and P8 contained sunscreen with higher vis-
cosity (3020 and 5000 mPa·s, respectively). This reduced the
likelihood of the formation of small aerosol liquid droplets
with relatively high deposition fractions in pulmonary
(Supplementary Table S2).

Products made from recipe 22 (P1–P3) had lower total TiO2

NP lung burdens than did products made from recipe 35 (P4–P6;
Fig. 2). This may be attributed to the higher viscosity in recipe 22
(2100 mPa·s) than in recipe 35 (1080 mPa·s; Supplementary
Table S2). A possible reason for the lower TiO2NP lung burdens
posed by P1 and P2 is that these sprays emitted the least volume
per action (0.19 mL) and TiO2 NP containment. Because aerosol
particle size distribution and concentration data are not provided
by the SCCS,we could not adequately explain the estimated total
TiO2 NP lung burdens.

Dose–response analysis

We obtained the Hill-based dose–response profile of TiO2 NP
burdens in the human lungs by converting experimental
mouse data by using weight ratios and corresponding neutro-
phil increments in BAL cells (Fig. 3). The results revealed that
the Hill model fit the dose–response datasets favorably (r2 =
0.95, p < 0.001), with a fit coefficient n of 3.40 (p < 0.01; Fig.
3; Supplementary Table S3). The mean estimated TiO2 NP
lung burdens that caused 0.5% and 50% of the maximum
increments of neutrophils in BAL cells were 4.31 and 20.50
mg, respectively (Fig. 3; Supplementary Table S3).

Threshold estimation

The Weibull threshold model could best fit to CDFs of EC0.5
extracted from the dose–response profile (Supplementary Fig.
S4; Table S4). The threshold estimate of γ0.5, which was se-
lected as the most conservative criterion for preventing the

0

0.05

0.1

0.15

0.2

0.25

0 2 4 6 8 10

a

Exposure time (year)

To
ta

l l
un

g 
Ti

O
2
NP

s
bu

rd
en

 (m
g)

Alveolar surface
(79.1%)

Lymph 
node 

(20.0%)

Alveolar surface region

Total lung burden 
(Alveolar surface + 

Interstitium) (80.0 %)

Total lung burden

Free particles (3.5%) Alveolar 
sequestration (0%)

b

c

Interstitium 
(0.9%)

Decayed & 
inactive AMs 

(35%)

Mobile alveolar 
macrophages (AMs) 

(61.5%)

Eliminated from 
lungs (20.0 %)

P1 P2 P4P3
P5 P6 P8P7

Fig. 2 (a) Time-dependent total lung TiO2 NPs burdens in human lungs
posed by long-term exposure of aerosolized TiO2 NPs emitted from sun-
screen spray products P1–P8 and (b, c) proportions of TiO2 NPs accu-
mulations in each compartment of the PB lung model

TiO2 NPs lung burden (mg)

N
eu

tr
op

hi
ls

 %
 in

 B
A

L 
ce

lls

0

2

4

6

8

10

12

14

0 13 26 39 52 65

Data
Model
95% CI

Fig. 3 Dose–response relationship between lung burdens of TiO2 NPs
and percentage of neutrophils in bronchoalveolar lavage (BAL) cells
based on the Hill model

Environ Sci Pollut Res



risks of TiO2 NP inhalation in the human body, was 1.09 ±
0.76 (mean ± SE) mg (Supplementary Fig. S4; Table S4).

Risk estimates

The risks posed by inhaling each of the TiO2 NP–
containing spray products were assessed using γ0.5 as a
conservative criterion to indicate the potential long-term
toxicity of the products (Fig. 4a). Overall, the HQs of P1–
P8 were all lower than 1 in different percentiles. Among
the products, P5 had the highest HQ estimates of 0.23
(0.07−0.82) (median (95% CI); Fig. 4a; Supplementary
Table S5). To more clearly compare the relative risks
posed by the various spray products, the risk ratio (RR)
of each product was estimated relative to the lowest HQ,
which was that posed by P1. P5 was discovered to also
have the highest RR estimate of 3.53 (3.47−3.60) among
products (Fig. 4b; Supplementary Table S6).

Moreover, the ERs corresponding to specific HQs in
different risk probabilities were determined for each prod-
uct (Fig. 4c; Supplementary Table S7). Consistent with
the HQ and RR results, P5 had the highest HQs (~0.2)
in the 20%, 50%, and 80% risk probabilities (Fig. 4c;
Supplementary Table S7), followed by P6–P8, for which

the HQs under the 50% risk probability (ER = 0.5) were
all approximately 0.08 (Fig. 4c; Supplementary Table S7).

Suggested daily using amounts and pressing
numbers

To provide practical strategies for preventing the pulmo-
nary risks posed by TiO2 NPs inhaled from spray prod-
ucts, we derived suggested daily use amounts and num-
bers of presses on the basis of the estimated γ0.5 (Fig.
5; Supplementary Table S8). Consistent in the results of
risk estimates, spray P5 had the lowest median of sug-
gested daily using amount of ~40 g with a pressing
number of 66. On the contrary, results showed that
spray P1 had the highest median of suggested daily
using amount of 142 g with a pressing number of 750
(Fig. 5; Supplementary Table S8).

The wide ranges in the suggested daily using
amounts and pressing numbers (e.g., the daily using
amount for P1 ranged from 39 to 528 g; Fig. 5;
Supplementary Table S8) mainly originated from the
large uncertainty in the threshold criterion γ0.5 (1.09 ±
0.76; Supplementary Table S4).
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Sensitivity analysis

On the basis of the results regarding the total TiO2 NP lung
burdens caused by 10 years of exposure to P5, local sensitivity
analysis was performed to determine the physiological param-
eter with the most influential effect on the total TiO2 NP lung
burdens in the PB lung model (Fig. 6). The results revealed
that the AM-mediated clearance of TiO2 NPs (cl) had the

strongest effect on the total TiO2 NP lung burdens; the esti-
mated burdens were 0.91 and 0.02 mg when the parameter
was 0.1- and 10-fold, respectively (Fig. 6). Moreover, the rate
at which particles were returned to the alveolar surface for
rephagocytosis (δA) had the second strongest effect, followed
by the parameters of transfer rate of particles from active to
inactive AMs (ρA) and normal interstitialization rate of parti-
cle (inormal) (Fig. 6).
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Discussion

Realistic exposure scenarios of TiO2 spray products

Regarding the use of TiO2 spray products, a mass of approx-
imately 9 g corresponds to the SCCS (2015)-recommended
amount of 18 g day−1 for each adult under the consideration of
two applications. To explore whether the experimental set-
tings of the eight spray products could be applied to realistic
conditions, we compared the exposure scenario with those in
previous studies. Wu and Hicks (2019) indicated that more
than 70% of individuals were exposed to 0–10 mg day−1 of
TiO2 NPs through the use of personal care products, revealing
that the employed exposure concentrations (0.46–1 mg per
spray product) were within the scope of the present study.

Studies have reported that 0.5 to 2.0 mg cm−2 of sunscreen
products are applied to 75% of the body’s surface area (Autier
et al. 2001, 2007; Bech-Thomsen and Wulf 1993; Diffey
1996; Gottlieb et al. 1997; Matta et al. 2019; Stenberg and
Larkö 1985). Themean body surface areas of men and women
are 2.03 and 1.73 m2, respectively (Tikuisis et al. 2001), im-
plying that the daily sunscreen use amount is approximately
6.5–30.5 g.

However, frequency of use and peak exposure should be
particularly considered in specific scenarios because most
studies have averaged the concentration over a reference pe-
riod of time (Kuhlbusch et al. 2018).

Other crucial factors such as humidity, cause of other prod-
ucts, and the behavior of aerosols used in large volumes could
be considered to design more rigorous exposure scenarios and
model exposure to nanosized aerosols during the spraying of
commercial products (Lorenz et al. 2011). Because the effi-
ciency of airborne nanomaterial deposition in the respiratory
system is governed by the material’s aerodynamic diameter,
which is typically larger than that of the primary nanomaterial
(Vance and Marr 2015), influencing factors such as the spray
mechanism and intensity should be explored in exposure as-
sessments. Experimental setups for simulating realistic appli-
cation of spray products near the human breathing zone
should also be designed in future exposure assays
(Nazarenko et al. 2011).

Estimation of TiO2 NPs burdens in human lung

Studies have assessed the accumulated lung burden posed by
exposure to airborne TiO2 NPs. Ling et al. (2011) applied the
multiple-path particle dosimetry model and exposure model to
determine the lung surface area exposed to TiO2 NPs; the dose
was estimated to be 0.21 m2. The PB lung model was
employed to estimate the TiO2 NP lung burden, in terms of
the total surface area (m2), for factory workers exposed over a
1-year period (Liao et al. 2008, 2009). Liao et al. (2008, 2009)
have evaluated the retardation of the clearance of insoluble

dust in the alveolar surface and interstitium (θ(Malv) and
θ(Minst)) to be 0.6, which is much higher than that (~0) pre-
dicted in the 10-year exposure experiment of the present
study. This contrast suggests that factories have a relatively
high level of exposure, which could lead to the retardation of
clearance by the immune system in the lungs.

In the study by Rossi et al. (2010b), mice were exposed to
three types of airborne TiO2 particle (silica-coated rutile TiO2

NPs of size 10 × 40 nm, coarse rutile TiO2 of size <5 μm, and
TiO2 NPs of size 30–40 nm with a rutile-to-anatase ratio of
9:1) under the same exposure conditions (concentration of 10
± 2 mgm−3, after 2 h of exposure on four consecutive days for
4 weeks). ICP-MS analysis of the mouse lung tissue revealed
no significant differences in accumulation rate between the
three TiO2 particle types. This finding indicates that the PB
lung model can be employed to estimate the lung burdens
induced by different TiO2 NP types.

In the lung deposition model, several factors can influence
lung burden forecasts. Breathing rate affects the inhaled
amount per unit time. Lung weight determines the magnitude
of the NP burden. Clearance is related to immune ability and
health condition. Men generally have a higher breathing rate
and larger lung weight than do women (Thamrong et al.
2006). Studies have also reported a difference in breathing
rate between Korean and Taiwanese people (MHW 2007;
Park et al. 2017). Immunity and health condition are known
to vary among age groups. Children and order adults are usu-
ally more sensitive to airborne pollutants (Zhang et al. 2016).

Inhalation toxicity of TiO2-containing aerosols

Consistent with the biomarker employed in the present study,
evidence is increasingly showing that lung inflammation is
associated with dose-dependent increments of total cells and
neutrophil count in BAL fluid (Kobayashi et al. 2009; Ma-
Hock et al. 2009; Nemmar et al. 2011; Roursgaard et al.
2011). Airborne TiO2 NP–induced airway hyperreactivity in
mice indicated that TiO2 NPs may induce asthma in individ-
uals with reactive airway disease (Hussain et al. 2011).
Moreover, several studies have discovered significant migra-
tion of TiO2 NPs from the alveolar surface to the interstitium
after inhalation or intratracheal instillation (Sager et al. 2008;
Shi et al. 2013). Studies examining rats after intratracheal
instillation of TiO2 NPs have observed expanded lung gaps;
hyperemia; alveolar thickness; and increased lactate dehydro-
genase activity, malodialdehyde, total protein, leukocytes, and
pulmonary inflammation (Tang et al. 2010; Zhang et al.
2009). Furthermore, increments of lung indices, severe in-
flammatory response, pulmonary edema, pneumocyte apopto-
sis, and lung bleeding were observed after 90 days in mice
with high susceptibility to TiO2 NP exposure (Sun et al.
2012).
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The tumorigenicity of TiO2 NPs was demonstrated in an
exposure test, indicating that the squamous cell carcinoma and
lung adenocarcinoma rates were significantly increased in
mice and rats after 2 years of exposure to 10 mg m−3 TiO2

NPs (Heinrich et al. 1995). However, the increased tumorige-
nicity risk is correlated with chronic inflammation or induced
by the possible formation of precancerous lesions such as
granuloma (Saffiotti and Stinson 1988; Multhoff et al.
2012). Because there is no inflammation risk, sequestration,
or granuloma formation in this study, the tumor formation risk
posed by sprays emitting TiO2 NPs is considerably low.

Studies have discovered that TiO2 NPs were localized
within epithelial and endothelial cells, connective tissue,
blood capillaries, and even red blood cells in rats exposed to
0.11 mg m−3 TiO2 NP aerosols (Geiser et al. 2005; Mühlfeld
et al. 2007). Li et al. (2010) also revealed that after 28 days of
intratracheal instillation, a small fraction of TiO2 NPs may
have entered the blood circulation and reached other organs,
including the liver and kidneys. Several inhalation studies
have also shown that TiO2 NPs can act as an airway irritant
and affect the expression of certain genes in both the heart and
lungs, exerting genotoxic effects (Kan et al. 2012; Li et al.
2010; Shi et al. 2013; Yazdi et al. 2010).

Aggregation of TiO2 NPs in rat lung tissue was observed in
an intratracheal instillation test by Gustafsson et al. (2011). On
day 30 after the exposure, the number of TiO2 NP aggregates
in AMswas clearly increased. Cell-shaped areas of aggregates
were also observed, possibly resulting from disrupted cells
that were “overloaded” with the particles. On day 90, the
aggregates were mainly found in the interstitium. Although
the aggregation of inhaled NPs is normal, the influence of
NP aggregates on toxicity and NP transportation remains un-
known. In the present study, the dose–response relationship
and total lung TiO2 NP burden were comprehensively de-
scribed and forecast without consideration of NP
aggregations.

The characteristics of NPs (e.g., shape, size, and surface
coating) play a major role in the NP’s toxicity. Several studies
have explored the respiratory system toxicity posed by TiO2

NPs of different sizes. Liu et al. (2009) reported that after 1
week of intratracheal instillation exposure, TiO2 NPs of size
5 nm led to more severe inflammation than did particles of
size 21 or 50 nm. In an experiment involving 6-h acute expo-
sure of rats of various sizes to 20 mg m−3 aerosol TiO2 NPs,
Noël et al. (2013) found the following: (i) larger TiO2 NPs
(>100 nm) had an acute inflammation effect, with significant
neutrophil increment found in BAL fluid; (ii) smaller TiO2

NPs (5, 10–30, or 50 nm) induced only significant oxidative
stress and cytotoxicity; and (iii) larger TiO2 NPs had a more
severe toxic effect than did smaller TiO2 NPs.

Compared with fine particles, TiO2 NPs have stronger pul-
monary effects because of their larger specific surface area,
easier interstitial access, and longer deposition time (Geiser

et al. 2008; Noël et al. 2012; Oberdörster et al. 1994). The
surface characteristics of NPs also play a major role in inha-
lation toxicity. Rossi et al. (2010a, 2010b) have indicated that
(i) TiO2 microparticles (<5 μm) induced more severe respira-
tory tract irritation than did silica-coated TiO2 NPs; (ii) rutile-
and anatase-form TiO2 NPs did not induce significant inflam-
mation effects; and (iii) silica-coated TiO2 NPs caused incre-
ments in TNF-α and neutrophils.

The mechanism through which TiO2 NPs induce a toxic
effect may be related to the particles’ high specific surface area
and electrostatic force. After they are ingested by cells, TiO2

NPs attach to the cell membrane, organelles, and biomole-
cules, leading to lipid peroxidation and membrane damage.
The catalysis of TiO2 NPs induces unpaired electrons on or-
ganic molecules, leading to reactive oxygen species (Hou
et al. 2019). Under moderate oxidative stress, inflammatory
responses could be induced by NPs due to activation of
NF-κB cascades (Cao 2018). Under high oxidative stress,
NPs resulted in oxidative damage and eventually apoptosis
and necrosis (Cao 2018).

Administrative strategies

The International Agency for Research on Cancer has classi-
fied TiO2 NPs as a possible carcinogen to human beings (i.e.,
group 2B; Baan et al. 2006). The National Institute for
Occupational Safety and Health (NIOSH) has also recom-
mended that TiO2 be classified as a “potential occupational
carcinogen” on the basis of observations made in a chronic
inhalation study that rats exposed to 250 mg m−3 fine TiO2

particles developed lung tumors (NIOSH 2011).
The SCCS has established a standard stating that a maxi-

mum concentration of 25% TiO2 NPs should be used in UV
filters within cosmetic products because of concerns regarding
the particles’ potential inhalation toxicity (SCCS 2018). The
committee has also suggested that TiO2 NPs within sunscreen
could be coated with inorganic material to prevent harmful
radicals being generated by UV excitation (EWG
(Environmental Working Group) 2018; Fang et al. 2017).
Recommended limitations on the exposure concentrations of
TiO2 have varied in studies, ranging from 0.3 to 15 mg m−3

depending on the particle size or standard employed (ACGIH
2007; SCCS 2018). The NIOSH recommends airborne expo-
sure limits of 2.4 mgm−3 for fine TiO2 particles (<2.5μm) and
0.3 mgm−3 for ultrafine TiO2 particles (e.g., engineered NPs),
which were based on a time-weighted average concentration
of up to 10 h day−1 during a 40-h work week (SCCS 2018).

Regarding the threshold dose of TiO2 NPs, Thompson
et al. (2016) estimated a no significant risk level (NSRL) of
300 μg day−1 for various biomarkers (e.g., particle overload,
chronic inflammation, and cell proliferation) on the basis of
empirical evidence obtained for human systems and through
mechanistic approaches. Compared with the threshold value
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identified in the present study (1.09 ± 0.76 mg), which was
derived on the basis of a more conservative criterion (γ0.5),
this NSRL is lower, possibly because of differences in the
sensitivity of the adopted biomarkers (Thompson et al.
2016). Moreover, the human-equivalent lung-deposited sur-
face area concentration was estimated to be 30.3 μm2 cm−3,
corresponding to the human-equivalent internal dose of 4.3 ×
10−3 cm2 g−1 after 8 h of exposure (Thompson et al. 2016).

Furthermore, for occupational groups, small quantities of
TiO2 NPs involved in activities such as weighing, mixing,
transferring, sonication, and solution creation should be han-
dled under laboratory fume hoods (Lee et al. 2010;
Mazzuckelli et al. 2007; Methner et al. 2010). The protective
measures employed during spray manufacture vary and de-
pend on the fabrication procedure because small particles are
mostly released during high-energy processes such as synthe-
sis, spraying, and machining (Ding et al. 2017). In addition to
factories having local exhaust ventilation together with a cen-
tral ventilation system, occupational workers are recommend-
ed to wear typical process-specific enclosures including a full-
body protection suit, laboratory clothes, glasses, gloves, and
masks to prevent exposure (Ding et al. 2017).

In 2009, the European Commission established a regula-
tion stating that anatase-crystalline TiO2 NPs, which are high-
ly irritating, cannot be present in concentrations higher than
5% within sunscreen products on sale to the public. The TiO2

NPs employed in sunscreen products should be coated to pre-
vent the generation of harmful radicals (EWG (Environmental
Working Group) 2017). To reduce inhalation, sunscreen
sprays should be kept away from the nose and mouth during
sunscreen application (Kessler 2011; EWG (Environmental
Working Group) 2017). The risk estimates derived in the pres-
ent study suggest that sprays emitting a relatively large vol-
ume per action, sprays with relatively high TiO2 NP concen-
trations, and lotions with relatively low viscosity have the
highest HQ. Therefore, we suggest that products be designed
that emit small volumes per action, have low TiO2 NP con-
centration, and have low viscosity to help reduce the level of
exposure.

Limitations and implications

Regarding the PB lung model implemented in this study, be-
cause of limited knowledge of the behaviors of TiO2 NPs, the
model may not have been fully predictive because it did not
consider the transport and fate of TiO2 NPs in the human body
after their inhalation. Few studies have validated the TiO2 NP
lung burden estimations obtained using the PB lung model.
Geiser et al. (2005) showed a deposition of 4–5 μg of TiO2

NPs per rat through 1 h of exposure, which is much higher
than the simulated human lung burden (3.4 × 10−5 to 0.42 μg)
in our constructed PB lung model. This discrepancy can be
attributed to uncertainties in parameter estimations,

differences in chamber volume, or physiological differences
between the target animals (e.g., respiratory rate). Because the
input parameters of the model constructed in the present study
were obtained from previous studies, the uncertainties could
be reflected in the risk estimates. However, studies on the
application of the PB lung model sufficiently concur that dif-
ficulties are encountered when exploring the long-term accu-
mulation of TiO2 NPs in animal models.

Regarding the application frequency, duration, and scenar-
ios for the eight sunscreen spray products investigated in the
present study, the experimental settings and assumptions were
relatively simple; approximately 9 g day−1 of the product was
sprayed into a release chamber (SCCS 2018). Clearly, the
datasets employed in human health risk assessments are not
applicable to every consumer and lack consideration of real-
istic exposure scenarios (SCCS 2018). Although consumer
exposure assessments usually rely on modeling and assump-
tions, risk estimates and lung burden estimates can be more
accurate if reasonable exposure scenarios are rigorously con-
sidered (Kuhlbusch et al. 2018).

We conducted a comprehensive risk assessment of eight
TiO2 NP–containing spray products. In the exposure assess-
ment, sprays were only pressed twice within a certain period;
frequency of application is likely to be higher in reality if the
user follows the consumer guidelines as stated on the product
labels (Matta et al. 2019). Therefore, although the eight spray
products did not pose significant pulmonary risks, the HQs
and ERs may have been underestimated because of insuffi-
cient exposure dose and frequency (SCCS 2018).
Additionally, the pulmonary risks of TiO2 NPs should be a
matter of concern for populations with weakened pulmonary
defense systems because ineffective macrophage clearance of
inhaled TiO2 NPs from the periphery of the lung has been
demonstrated to lead to biopersistence of NPs and to favor
their translocation into the lung interstitium and then the vas-
culature, having deleterious effects (Geiser et al. 2008).

Conclusions

We employed a mechanistic approach to evaluate the long-
term risks associated with TiO2 NP inhalation from different
sunscreen spray products. Given the investigated exposure
scenarios (e.g., frequency and duration), the eight spray prod-
ucts are unlikely to pose significant inhalation risks even after
10 years of exposure. Nonetheless, the risk estimates could be
higher if the products were applied more frequently or for
longer durations, including as directed on product labels. In
other cases, the inhalation risks of TiO2 NP–containing aero-
sols are potentially higher when the products are used by
individuals with allergic airway diseases. We conclude that
the human health risk assessment framework integrated with
the PB lung model facilitated estimations of the risk of long-
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term use of nanotechnology-based spray products.
Mechanistic models and extrapolation tools can bridge knowl-
edge gaps and solve difficulties in chronic exposure assess-
ments within rodent or even human systems. Given the im-
portance of the issue of NP inhalation to the management of
nanomaterials, the present study suggests that the amount of
product of number of spray presses could be employed as
pragmatic tools for evaluating appropriate standards for other
NP-containing spray products. However, public acceptance of
sunscreen products may depend on updated approval from the
SCCS and convincing safety data.
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